Models¶
time_interpret provides several general deep learning models, as well as a network to use them along with the pytorch lightning framework. These models are listed here:
Summary¶
|
Get Bert model for sentence classification, either as a pre-trained model or from scratch. |
|
Base CNN class. |
|
Get DistilBert model for sentence classification, either as a pre-trained model or from scratch. |
|
Base MLP class. |
|
Base Net class. |
|
A base recurrent model class. |
|
Get Roberta model for sentence classification, either as a pre-trained model or from scratch. |
|
A base transformer encoder model class. |
Detailed classes and methods¶
- tint.models.Bert(pretrained_model_name_or_path: Optional[str] = None, config=None, vocab_file=None, cache_dir=None, **kwargs)[source]¶
Get Bert model for sentence classification, either as a pre-trained model or from scratch.
- Parameters:
pretrained_model_name_or_path¶ – Path of the pre-trained model. If
None
, return an untrained Bert model. Default toNone
config¶ – Config of the Bert. Required when not loading a pre-trained model, otherwise unused. Default to
None
vocab_file¶ – Path to a vocab file for the tokenizer. Default to
None
cache_dir¶ – Where to save pretrained model. Default to
None
kwargs¶ – Additional arguments for the tokenizer if not pretrained.
- Returns:
- Bert Tokenizer (BertTokenizer):
Bert Tokenizer.
- Bert Model (BertForSequenceClassification):
Bert model for sentence classification.
- Return type:
2-element tuple of Bert Tokenizer, Bert Model
References
https://huggingface.co/docs/transformers/main/en/model_doc/bert
Examples
>>> from tint.models import Bert >>> tokenizer, model = Bert("bert-base-uncased")
- class tint.models.CNN(units: list, kernel_size: Union[list, int], stride: Union[list, int] = 1, padding: Union[list, int] = 0, dilation: Union[list, int] = 1, groups: Union[list, int] = 1, bias: Union[list, bool] = True, padding_mode: Union[list, str] = 'zeros', dropout: Union[list, float] = 0.0, norm: Optional[Union[list, str]] = None, activations: Union[list, str] = 'relu', pooling: Optional[Union[list, str]] = None, flatten: bool = True)[source]¶
Base CNN class.
The following batch norms are available:
BatchNorm2d:
'batch_norm_2d'
the following activations are available:
CELU:
'celu'
ELU:
'elu'
LeakyReLU:
'leaky_relu'
LogSoftmax:
'log_softmax'
ReLU:
'relu'
ReLU6:
'relu6'
Sigmoid:
'sigmoid'
Softmax:
'softmax'
Softplus:
'softplus'
SoftSign:
'softsign'
Tanh:
'tanh'
Tanhshrink:
'tanhshrink'
and the following pooling layers are available:
MaxPool2d with a kernel size of 2:
'max_pool_2d'
For more insights into specific arguments of the CNN, please refer to Conv2d pytorch documentation.
- Parameters:
units¶ (list) – A list of units, which creates the layers. Default to
None
dropout¶ (list, float) – Dropout rates. Default to 0.0
norm¶ (list, str) – Normalisation layers. Either a list or a string. Default to
None
activations¶ (list, str) – Activation functions. Either a list or a string. Default to
'relu'
pooling¶ (list, str) – Pooling module. Either a list or a string. Default to
None
flatten¶ (bool) – Whether to flatten the output of the model or not. Default to
True
References
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d
Examples
>>> import torch.nn as nn >>> from tint.models import CNN >>> cnn = CNN(units=[10, 8, 6], kernel_size=3) # Simple cnn with relu activations. >>> cnn = CNN(units=[10, 8, 6], kernel_size=3, dropout=.1) # Adding dropout. >>> cnn = CNN(units=[10, 8, 6], kernel_size=3, activations="elu") # Elu activations.
- forward(x: Tensor) Tensor [source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- tint.models.DistilBert(pretrained_model_name_or_path: Optional[str] = None, config=None, vocab_file=None, cache_dir=None, **kwargs)[source]¶
Get DistilBert model for sentence classification, either as a pre-trained model or from scratch.
- Parameters:
pretrained_model_name_or_path¶ – Path of the pre-trained model. If
None
, return an untrained DistilBert model. Default toNone
config¶ – Config of the DistilBert. Required when not loading a pre-trained model, otherwise unused. Default to
None
vocab_file¶ – Path to a vocab file for the tokenizer. Default to
None
cache_dir¶ – Where to save pretrained model. Default to
None
kwargs¶ – Additional arguments for the tokenizer if not pretrained.
- Returns:
- DistilBert Tokenizer (DistilBertTokenizer):
DistilBert Tokenizer.
- DistilBert Model (DistilBertForSequenceClassification):
DistilBert model for sentence classification.
- Return type:
2-element tuple of DistilBert Tokenizer, DistilBert Model
References
https://huggingface.co/docs/transformers/main/en/model_doc/distilbert
Examples
>>> from tint.models import DistilBert >>> tokenizer, model = DistilBert("distilbert-base-uncased")
- class tint.models.MLP(units: list, bias: Union[list, bool] = True, dropout: Union[list, float] = 0.0, norm: Optional[Union[list, str]] = None, activations: Union[list, str] = 'relu', activation_final: Optional[str] = None)[source]¶
Base MLP class.
The following batch norms are available:
BatchNorm1d:
'batch_norm_1d'
and the following activations are available:
CELU:
'celu'
ELU:
'elu'
LeakyReLU:
'leaky_relu'
LogSoftmax:
'log_softmax'
ReLU:
'relu'
ReLU6:
'relu6'
Sigmoid:
'sigmoid'
Softmax:
'softmax'
Softplus:
'softplus'
SoftSign:
'softsign'
Tanh:
'tanh'
Tanhshrink:
'tanhshrink'
For more insights into specific arguments of the MLP, please refer to Linear pytorch documentation.
- Parameters:
units¶ (list) – A list of units, which creates the layers. Default to
None
bias¶ (list, bool) – Whether to add bias to each layer. Default to
True
dropout¶ (list, float) – Dropout rates. Default to 0.0
norm¶ (list, str) – Normalisation layers. Either a list or a string. Default to
None
activations¶ (list, str) – Activation functions. Either a list or a string. Default to
'relu'
activation_final¶ (str) – Final activation. Default to
None
References
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
Examples
>>> import torch.nn as nn >>> from tint.models import MLP >>> mlp = MLP(units=[5, 10, 1]) # Simple fc with relu activations. >>> mlp = MLP(units=[5, 10, 1], dropout=.1) # Adding dropout. >>> mlp = MLP(units=[5, 10, 1], activations="elu") # Elu activations.
- forward(x: Tensor) Tensor [source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class tint.models.Net(layers: Union[List[Module], Module], loss: Union[str, Callable] = 'mse', optim: str = 'adam', lr: float = 0.001, lr_scheduler: Optional[Union[dict, str]] = None, lr_scheduler_args: Optional[dict] = None, l2: float = 0.0)[source]¶
Base Net class.
This provides a wrapper around any Pytorch model into the Pytorch Lightning framework.
Net adds a loss and an optimizer to the model. The following losses are available:
MAE:
'l1'
MSE:
'mse'
NLL:
'nll'
CrossEntropy:
'cross_entropy'
CrossEntropy with soft labels:
'soft_cross_entropy'
BCE with logits:
'bce_with_logits'
The following optimizer are available:
SGD:
'sgd'
Adam:
'adam'
It is also possible to pass a custom learning rate to the Net, as well as a learning rate scheduler. Both SGD and Adam also support l2 regularisation.
- Parameters:
layers¶ (list, nn.Module) – The base layers. Can be either a Pytorch module or a list of Pytorch modules.
loss¶ (str, callable) – Which loss to use. Default to
'mse'
optim¶ (str) – Which optimizer to use. Default to
'adam'
lr¶ (float) – Learning rate. Default to 1e-3
lr_scheduler¶ (dict, str) – Learning rate scheduler. Either a dict (custom scheduler) or a string. Default to
None
lr_scheduler_args¶ (dict) – Additional args for the scheduler. Default to
None
l2¶ (float) – L2 regularisation. Default to 0.0
References
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
Examples
>>> import torch.nn as nn >>> from tint.models import MLP, Net >>> mlp = MLP(units=[5, 10, 1]) # Simple fc with relu activations. >>> net = Net([mlp]) # Wrap the mlp into a PyTorch Lightning Net
- configure_optimizers()[source]¶
Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple.
- Returns:
Any of these 6 options.
Single optimizer.
List or Tuple of optimizers.
Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple
lr_scheduler_config
).Dictionary, with an
"optimizer"
key, and (optionally) a"lr_scheduler"
key whose value is a single LR scheduler orlr_scheduler_config
.Tuple of dictionaries as described above, with an optional
"frequency"
key.None - Fit will run without any optimizer.
The
lr_scheduler_config
is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.lr_scheduler_config = { # REQUIRED: The scheduler instance "scheduler": lr_scheduler, # The unit of the scheduler's step size, could also be 'step'. # 'epoch' updates the scheduler on epoch end whereas 'step' # updates it after a optimizer update. "interval": "epoch", # How many epochs/steps should pass between calls to # `scheduler.step()`. 1 corresponds to updating the learning # rate after every epoch/step. "frequency": 1, # Metric to to monitor for schedulers like `ReduceLROnPlateau` "monitor": "val_loss", # If set to `True`, will enforce that the value specified 'monitor' # is available when the scheduler is updated, thus stopping # training if not found. If set to `False`, it will only produce a warning "strict": True, # If using the `LearningRateMonitor` callback to monitor the # learning rate progress, this keyword can be used to specify # a custom logged name "name": None, }
When there are schedulers in which the
.step()
method is conditioned on a value, such as thetorch.optim.lr_scheduler.ReduceLROnPlateau
scheduler, Lightning requires that thelr_scheduler_config
contains the keyword"monitor"
set to the metric name that the scheduler should be conditioned on.# The ReduceLROnPlateau scheduler requires a monitor def configure_optimizers(self): optimizer = Adam(...) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau(optimizer, ...), "monitor": "metric_to_track", "frequency": "indicates how often the metric is updated" # If "monitor" references validation metrics, then "frequency" should be set to a # multiple of "trainer.check_val_every_n_epoch". }, } # In the case of two optimizers, only one using the ReduceLROnPlateau scheduler def configure_optimizers(self): optimizer1 = Adam(...) optimizer2 = SGD(...) scheduler1 = ReduceLROnPlateau(optimizer1, ...) scheduler2 = LambdaLR(optimizer2, ...) return ( { "optimizer": optimizer1, "lr_scheduler": { "scheduler": scheduler1, "monitor": "metric_to_track", }, }, {"optimizer": optimizer2, "lr_scheduler": scheduler2}, )
Metrics can be made available to monitor by simply logging it using
self.log('metric_to_track', metric_val)
in yourLightningModule
.Note
The
frequency
value specified in a dict along with theoptimizer
key is an int corresponding to the number of sequential batches optimized with the specific optimizer. It should be given to none or to all of the optimizers. There is a difference between passing multiple optimizers in a list, and passing multiple optimizers in dictionaries with a frequency of 1:In the former case, all optimizers will operate on the given batch in each optimization step.
In the latter, only one optimizer will operate on the given batch at every step.
This is different from the
frequency
value specified in thelr_scheduler_config
mentioned above.def configure_optimizers(self): optimizer_one = torch.optim.SGD(self.model.parameters(), lr=0.01) optimizer_two = torch.optim.SGD(self.model.parameters(), lr=0.01) return [ {"optimizer": optimizer_one, "frequency": 5}, {"optimizer": optimizer_two, "frequency": 10}, ]
In this example, the first optimizer will be used for the first 5 steps, the second optimizer for the next 10 steps and that cycle will continue. If an LR scheduler is specified for an optimizer using the
lr_scheduler
key in the above dict, the scheduler will only be updated when its optimizer is being used.Examples:
# most cases. no learning rate scheduler def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) # multiple optimizer case (e.g.: GAN) def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) return gen_opt, dis_opt # example with learning rate schedulers def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) dis_sch = CosineAnnealing(dis_opt, T_max=10) return [gen_opt, dis_opt], [dis_sch] # example with step-based learning rate schedulers # each optimizer has its own scheduler def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) gen_sch = { 'scheduler': ExponentialLR(gen_opt, 0.99), 'interval': 'step' # called after each training step } dis_sch = CosineAnnealing(dis_opt, T_max=10) # called every epoch return [gen_opt, dis_opt], [gen_sch, dis_sch] # example with optimizer frequencies # see training procedure in `Improved Training of Wasserstein GANs`, Algorithm 1 # https://arxiv.org/abs/1704.00028 def configure_optimizers(self): gen_opt = Adam(self.model_gen.parameters(), lr=0.01) dis_opt = Adam(self.model_dis.parameters(), lr=0.02) n_critic = 5 return ( {'optimizer': dis_opt, 'frequency': n_critic}, {'optimizer': gen_opt, 'frequency': 1} )
Note
Some things to know:
Lightning calls
.backward()
and.step()
on each optimizer as needed.If learning rate scheduler is specified in
configure_optimizers()
with key"interval"
(default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s.step()
method automatically in case of automatic optimization.If you use 16-bit precision (
precision=16
), Lightning will automatically handle the optimizers.If you use multiple optimizers,
training_step()
will have an additionaloptimizer_idx
parameter.If you use
torch.optim.LBFGS
, Lightning handles the closure function automatically for you.If you use multiple optimizers, gradients will be calculated only for the parameters of current optimizer at each training step.
If you need to control how often those optimizers step or override the default
.step()
schedule, override theoptimizer_step()
hook.
- predict_step(batch, batch_idx, dataloader_idx=0)[source]¶
Step function called during
predict()
. By default, it callsforward()
. Override to add any processing logic.The
predict_step()
is used to scale inference on multi-devices.To prevent an OOM error, it is possible to use
BasePredictionWriter
callback to write the predictions to disk or database after each batch or on epoch end.The
BasePredictionWriter
should be used while using a spawn based accelerator. This happens forTrainer(strategy="ddp_spawn")
or training on 8 TPU cores withTrainer(accelerator="tpu", devices=8)
as predictions won’t be returned.Example
class MyModel(LightningModule): def predict_step(self, batch, batch_idx, dataloader_idx=0): return self(batch) dm = ... model = MyModel() trainer = Trainer(accelerator="gpu", devices=2) predictions = trainer.predict(model, dm)
- test_step(batch, batch_idx)[source]¶
Operates on a single batch of data from the test set. In this step you’d normally generate examples or calculate anything of interest such as accuracy.
# the pseudocode for these calls test_outs = [] for test_batch in test_data: out = test_step(test_batch) test_outs.append(out) test_epoch_end(test_outs)
- Parameters:
- Returns:
Any of.
Any object or value
None
- Testing will skip to the next batch
# if you have one test dataloader: def test_step(self, batch, batch_idx): ... # if you have multiple test dataloaders: def test_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single test dataset def test_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'test_loss': loss, 'test_acc': test_acc})
If you pass in multiple test dataloaders,
test_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple test dataloaders def test_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to test you don’t need to implement this method.
Note
When the
test_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.
- training_step(batch, batch_idx)[source]¶
Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.
- Parameters:
batch¶ (
Tensor
| (Tensor
, …) | [Tensor
, …]) – The output of yourDataLoader
. A tensor, tuple or list.batch_idx¶ (
int
) – Integer displaying index of this batchoptimizer_idx¶ (
int
) – When using multiple optimizers, this argument will also be present.hiddens¶ (
Any
) – Passed in iftruncated_bptt_steps
> 0.
- Returns:
Any of.
Tensor
- The loss tensordict
- A dictionary. Can include any keys, but must include the key'loss'
None
- Training will skip to the next batch. This is only for automatic optimization.This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.
In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.
Example:
def training_step(self, batch, batch_idx): x, y, z = batch out = self.encoder(x) loss = self.loss(out, x) return loss
If you define multiple optimizers, this step will be called with an additional
optimizer_idx
parameter.# Multiple optimizers (e.g.: GANs) def training_step(self, batch, batch_idx, optimizer_idx): if optimizer_idx == 0: # do training_step with encoder ... if optimizer_idx == 1: # do training_step with decoder ...
If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.
# Truncated back-propagation through time def training_step(self, batch, batch_idx, hiddens): # hiddens are the hidden states from the previous truncated backprop step out, hiddens = self.lstm(data, hiddens) loss = ... return {"loss": loss, "hiddens": hiddens}
Note
The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.
Note
When
accumulate_grad_batches
> 1, the loss returned here will be automatically normalized byaccumulate_grad_batches
internally.
- validation_step(batch, batch_idx)[source]¶
Operates on a single batch of data from the validation set. In this step you’d might generate examples or calculate anything of interest like accuracy.
# the pseudocode for these calls val_outs = [] for val_batch in val_data: out = validation_step(val_batch) val_outs.append(out) validation_epoch_end(val_outs)
- Parameters:
- Returns:
Any object or value
None
- Validation will skip to the next batch
# pseudocode of order val_outs = [] for val_batch in val_data: out = validation_step(val_batch) if defined("validation_step_end"): out = validation_step_end(out) val_outs.append(out) val_outs = validation_epoch_end(val_outs)
# if you have one val dataloader: def validation_step(self, batch, batch_idx): ... # if you have multiple val dataloaders: def validation_step(self, batch, batch_idx, dataloader_idx=0): ...
Examples:
# CASE 1: A single validation dataset def validation_step(self, batch, batch_idx): x, y = batch # implement your own out = self(x) loss = self.loss(out, y) # log 6 example images # or generated text... or whatever sample_imgs = x[:6] grid = torchvision.utils.make_grid(sample_imgs) self.logger.experiment.add_image('example_images', grid, 0) # calculate acc labels_hat = torch.argmax(out, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) # log the outputs! self.log_dict({'val_loss': loss, 'val_acc': val_acc})
If you pass in multiple val dataloaders,
validation_step()
will have an additional argument. We recommend setting the default value of 0 so that you can quickly switch between single and multiple dataloaders.# CASE 2: multiple validation dataloaders def validation_step(self, batch, batch_idx, dataloader_idx=0): # dataloader_idx tells you which dataset this is. ...
Note
If you don’t need to validate you don’t need to implement this method.
Note
When the
validation_step()
is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.
- class tint.models.RNN(input_size: int, rnn: Union[RNNBase, str] = 'rnn', hidden_size: int = 32, num_layers: int = 1, bias: bool = True, dropout: float = 0.0, bidirectional: bool = False, many_to_one: bool = False)[source]¶
A base recurrent model class.
The following RNN are supported:
RNN:
'rnn'
LSTM:
'lstm'
GRU:
'gru'
- Parameters:
input_size¶ (int) – Input size of the model.
rnn¶ (nn.RNNBase, str) – Which type of RNN to use. Default to
'rnn'
hidden_size¶ (int) – The number of features in the hidden state h. Default to 32
num_layers¶ (int) – Number of recurrent layers. Default to 1
bias¶ (bool) – Whether to use bias. Default to
True
dropout¶ (float) – Dropout rates. Default to 0.0
bidirectional¶ (bool) – If
True
, becomes a bidirectional RNN. Default toFalse
many_to_one¶ (bool) – Whether to reduce the temporal dimension. Default to
False
References
https://pytorch.org/docs/stable/nn.html#recurrent-layers
Examples
>>> from tint.models import RNN >>> rnn = RNN(10, hidden_size=32) >>> gru = RNN(10, rnn="gru", bidirectional=True) >>> lstm = RNN(10, rnn="lstm", many_to_one=True)
- forward(x: Tensor) Tensor [source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- tint.models.Roberta(pretrained_model_name_or_path: Optional[str] = None, config=None, vocab_file=None, cache_dir=None, **kwargs)[source]¶
Get Roberta model for sentence classification, either as a pre-trained model or from scratch.
- Parameters:
pretrained_model_name_or_path¶ – Path of the pre-trained model. If
None
, return an untrained Roberta model. Default toNone
config¶ – Config of the Roberta. Required when not loading a pre-trained model, otherwise unused. Default to
None
vocab_file¶ – Path to a vocab file for the tokenizer. Default to
None
cache_dir¶ – Where to save pretrained model. Default to
None
kwargs¶ – Additional arguments for the tokenizer if not pretrained.
- Returns:
- Roberta Tokenizer (RobertaTokenizer):
Roberta Tokenizer.
- Roberta Model (RobertaForSequenceClassification):
Roberta model for sentence classification.
- Return type:
2-element tuple of Roberta Tokenizer, Roberta Model
References
https://huggingface.co/docs/transformers/main/en/model_doc/roberta
Examples
>>> from tint.models import Roberta >>> tokenizer, model = Roberta("roberta-base")
- class tint.models.TransformerEncoder(d_model: int, nhead: int = 1, dim_feedforward: int = 32, num_layers: int = 1, dropout: float = 0.0, activation: str = 'relu', layer_norm_eps: float = 1e-05, norm_first: bool = False, enable_nested_tensor: bool = False, many_to_one: bool = False)[source]¶
A base transformer encoder model class.
- Parameters:
d_model¶ (int) – Input size of the model.
nhead¶ (int) – Number of heads. Default to 1
dim_feedforward¶ (int) – Dimension of the feedforward network model. Default to 32
num_layers¶ (int) – Number of layers. Default to 1
dropout¶ (float) – Dropout rates. Default to 0.0
activation¶ (str) – Activation function. Default to
'relu'
layer_norm_eps¶ (float) – Eps value in layer normalization components. Default to 1e-5
norm_first¶ (bool) – If
True
, layer norm is done prior to attention and feedforward operations, respectively. Default toFalse
enable_nested_tensor¶ (bool) – If
True
, input will automatically convert to nested tensor. Default toFalse
many_to_one¶ (bool) – Whether to reduce the temporal dimension. Default to
False
References
https://pytorch.org/docs/stable/nn.html#transformer-layers
Examples
>>> from tint.models import TransformerEncoder >>> transformer = TransformerEncoder(10) >>> transformer = TransformerEncoder(10, nhead=2, dropout=0.1)
- forward(x: Tensor) Tensor [source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- property src_mask¶
Generate a square mask for the sequence. The masked positions are filled with float(‘-inf’). Unmasked positions are filled with float(0.0).
- Returns:
A mask.
- Return type:
th.Tensor