Source code for tint.metrics.white_box.information
import numpy as np
from captum.log import log_usage
from captum._utils.typing import TensorOrTupleOfTensorsGeneric
from typing import Tuple, cast
from .base import _base_white_box_metric
EPS = 1e-5
def _information(
attributions: Tuple[np.ndarray],
true_attributions: Tuple[np.ndarray],
attributions_subset: Tuple[np.ndarray],
) -> Tuple[float]:
info = tuple(
float((np.abs(np.log2(1 - attr + EPS))).sum())
for attr in attributions_subset
)
return cast(Tuple[float, ...], info)
[docs]@log_usage()
def information(
attributions: TensorOrTupleOfTensorsGeneric,
true_attributions: TensorOrTupleOfTensorsGeneric,
normalize: bool = True,
) -> Tuple[float]:
"""
Information measure of the attributions over the true_attributions.
This metric measures how much information there is in the attributions.
Higher is better.
Args:
attributions (tensor or tuple of tensors):
The attributions with respect to each input feature.
Attributions will always be
the same size as the provided inputs, with each value
providing the attribution of the corresponding input index.
If a single tensor is provided as inputs, a single float
is returned. If a tuple is provided for inputs, a tuple of
float is returned.
true_attributions (tensor or tuple of tensors):
True attributions to be used as a benchmark. Should be of
the same format as the attributions.
normalize (bool): Whether to normalize the attributions before
computing the metric or not. Default: True
Returns:
(float or tuple or floats): The aur metric.
References:
`Explaining Time Series Predictions with Dynamic Masks <https://arxiv.org/abs/2106.05303>`_
Examples:
>>> import torch as th
>>> from tint.metrics.white_box import information
<BLANKLINE>
>>> attr = th.rand(8, 7, 5)
>>> true_attr = th.randint(2, (8, 7, 5))
<BLANKLINE>
>>> information_ = information(attr, true_attr)
"""
return _base_white_box_metric(
metric=_information,
attributions=attributions,
true_attributions=true_attributions,
normalize=normalize,
hard_labels=True,
)